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WHY WOULD WE STILL TALK ABOUT DATA 

SERVICE BUILDING BLOCKS?

(OR ULFS, ULSS, OR MIDDLEWARE BUILDING 

BLOCKS…)



THE EVOLUTION OF STORAGE SERVICES

� We’ve drawn this figure (or 

versions of it) for a long time

� Has a lot in common with 

scalable Internet services

� Key technologies: block 

devices, sockets, pthreads, 

kernel drivers

� How did we tie them 

together?  Did it really matter 

that much when operations 

took milliseconds to 

complete? 

Let’s reflect on our roots: a conventional storage service architecture
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THE EVOLUTION OF STORAGE SERVICES 
Next generation storage service architecture:
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� Updated version of the same 

storage service diagram

� Key technologies: NVRAM, 

RDMA, dynamic services, 

higher concurrency

� Latency and jitter are more 

of a problem now than ever

� The high level dynamic 

service organization would 

look familiar to an Amazon 

Web Services user, though



HOW DO WE GET THERE?

Technology transitions

Block devices Byte-addressable memory

Sockets Small messages and RDMA

Pthreads or event loops Lightweight threads

Monolithic services Dynamic service groups

Remote daemons Local and remote daemons
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Every man for

himself?

Maybe we can share 

engineering components 

and free up time for 

research!



HOW DO WE GET THERE?

Technology transitions Example components

Block devices Byte-addressable memory NVML / libpmem

Sockets Small messages and RDMA Mercury RPCs

Pthreads or event loops Lightweight threads Argobots

Monolithic services Dynamic service groups SSG

Remote daemons Local and remote daemons Mercury component composition
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USER-LEVEL DATA SERVICE BUILDING BLOCK 

EXAMPLES



EXAMPLE SERVICE
DATA PATH
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The keys to optimization have changed:

� Avoiding privileged mode transitions

� Avoiding context switches in general

� Avoiding memory copies

User-space network

access (could be

OFI/libfabic)

User-space 

storage device 

access

“Glue” holding 

resources together

P. Carns et al., “Enabling NVM for data-intensive scientific 

services,” in 4th Workshop on Interactions of NVM/Flash with 

Operating Systems and Workloads (INFLOW 16), 2016. 

Looks like many “layers”, but that’s a red herring 

when fishing for optimizations as long as the 

interactions between the layers are efficient:



BRIEFLY: LIBPMEM (NVML)

� A user space library for access to persistent memory regions, by Intel

� Just load/stores, right?  What would you want an API for?
– Well-defined control over persistence

– Well-defined device naming/reference conventions

– A family of derived libraries for data structures that understand persistent memory 

references, transactions, atomicity, etc:
• Libpmemobj: object storage

• Libpmemblk: fixed-size blocks

• Libvmmalloc: malloc() replacement

…

• Pmemfile: file system in user space with no kernel VFS or block device

– (i.e., a user-level file system)

– http://pmem.io/nvml/



COMMUNICATION



MERCURY:
A HIGH PERFORMANCE RPC FRAMEWORK

Mercury is an RPC system for use in the development of high performance 
system services. Developed by the HDF Group and ANL

� Portable across systems and network technologies

� Efficient bulk data movement to complement control messages

� Builds on lessons learned from IOFSL, Nessie, lnet, and others

� https://mercury-hpc.github.io/

Client Server

RPC proc

Network Abst ract ion Layer

RPC proc

M et adat a (unexpect ed
+ expect ed messaging)

Bulk Data (RM A t ransfer)



MERCURY: A LITTLE MORE CONTEXT

� It’s not a competitor to Portals, verbs, libfabric, GNI, etc.
– …because it’s not a communication transport library

– It sits on top of transport libraries (using an plugin API for network abstractions)

� Provides simplifications for service implementers:
– Remote procedure calls 

– RDMA abstraction (or emulation)

– Protocol encoding

– Clearly defined progress and event model

Client Server

RPC proc

Network Abst ract ion Layer

RPC proc

M et adat a (unexpect ed
+ expect ed messaging)

Bulk Data (RM A t ransfer)

– No restrictions on client/server roles

– No global fault domain 

(MPI_COMM_WORLD)



APPLYING MERCURY TO HPC DATA SERVICES

� Mercury has an abstraction layer for network transports.  Notable examples:
– OFI: via native plugin (Intel contribution)

– IB: via CCI plugin (ORNL contribution)

– TCP/IP: via BMI plugin

– SHMEM: via internal plugin

– Local: via internal code path, skips plugins

� There is a price, though: Mercury is minimal and fast, but a challenge to program 

(it is inherently event-driven)
– We added a layer called “Margo” that adds an easy-to-use sequential interface

– Relies on user-level thread scheduling for concurrency

– Greatly simplifies service development while retaining native performance

– https://xgitlab.cels.anl.gov/sds/margo/



CONCURRENCY



WHAT PROBLEM IS ARGOBOTS SOLVING BESIDES 
MAKING MERCURY A BIT EASIER TO PROGRAM? 
� Observation from earlier: many cores, and more I/O concurrency than there are 

cores on storage service nodes
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� Example:  N concurrent 

replicated write operations on 

one server daemon

� Illustrated as a state machine 

in this figure (the arrows are 

weird; blame powerpoint)

� Each request involves multiple 

steps: some will block, some 

will branch

� The server needs to keep 

track of where each request is 

in state machine

� Confounding matters, each 

resource probably has its own 

progress/completion model



WE’VE TRIED A FEW PRODUCTIVITY SOLUTIONS…

� Threads (per request, or thread pools for various steps)
– Context switch cost could be high

– Might cause undue contention on network resource (i.e. who is driving the device?)

– Wasteful if the threads are there only to wait, not compute

� Event-driven (events from async resources or from thread pools)
– Has potential to avoid extraneous context switch cost

– Maintenance and developer ramp-up cost is high due to stack ripping

� PVFS state machines
– Formalize the event-driven transitions and makes them easier to conceptualize

– Still stack ripping, though

� Aesop (from Triton/ASG project)
– C language extensions and runtime library

– Hides stack ripping and continuation logic, looks (mostly) like pleasant linear C code

– The dark side of Aesop: trades a service maintenance burden for an even worse 

language extension maintenance burden!
16



ARGOBOTS:
A LIGHTWEIGHT THREADING/TASKING FRAMEWORK

Overview
� User-level threading: lightweight context 

switching among many concurrent threads

� Use multiple cores and control delegation 
of work to those cores

� http://argobots.org/
Key features for data services
� Lets us track state of many concurrent 

operations with simple service code paths 
and low OS resource consumption

� Custom schedulers (i.e., to implement 
priorities, or limit CPU usage)

� Primitives that facilitate linkage to external 
resources

ArgobotsArgobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)
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MORE THAN JUST FAST DATA PATHS: HOW TO 

ORGANIZE DYNAMIC SERVICES



GLUING MULTIPLE COMPONENTS TOGETHER

� Consider the example of 2 or more simple microservices that are combined to 

present a more complex data model

– One service/component for bulk data storage

– One service/component for key/value indexing

– Combined, they allow you to create objects with custom names and indices

� E.g., Create a 100 MiB object named “Fred”

1. Write 100 MiB into bulk data region

2. Put key=“Fred” value=data_region_reference into K/V store

� Complete file systems or scientific data models may require more complex 

combinations (multiple dimensions, other data structures, etc.)

Or: a story of software engineering with Mercury APIs
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COMPOSED AND CO-LOCATED SERVICES

� Expose RPC API for each microservice to the 

client node

� Present a “composed library” to the application 

that so that it can create Fred objects

� Flexible: services could be anywhere

� Performance problem: 2 RPC round trips 

where you would only expect one in a 

conventional monolithic service

� Compound/chain RPCs could solve this in 

theory, but difficult to implement and limit 

flexibility20

Option 1 (“We can do this the slow way”)



COMPOSED AND CO-LOCATED SERVICES

� Composed library exchanges RPCs with a 

composed service

� The composed service doesn’t do much:

– Delegates RPCs to microservices

– Propagates RDMA token (Mercury bulk handle) 

to the service(s) that will drive data transfer

� More generally, we can mix and match remote 

and non-remote components with the same 

API conventions; no change to service 

implementation

� Key question: how fast is local RPC delegation?  

We will rely on fast paths in Mercury for intra-

process and intra-node channels21

Option 2 (“I/O forwarding for high-level APIs”)



HOW DO WE ORGANIZE MULTIPLE DYNAMIC 
SERVICES?
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Client

� SSG: scalable service groups

� https://xgitlab.cels.anl.gov/sds/ssg

� Adds group membership to Mercury

– Group bootstrapping / wire-up / launch

• Config file

• MPI communicator

• PMIx (one day)?

– Provides identifiers to concisely reference 

groups of processes

– Provides optional fault detection

� We think of this, combined with a pub/sub 

registry service, as scaffolding for assembling 

composable services



BACK TO THE BIG PICTURE



OBSERVATIONS

� New architectures and new hardware resources call for new building blocks for 

user-level storage services

� We can potentially speed up development and ease maintenance by sharing 

these building blocks

– These will never be optimal for every use case

– Consider when expertise/resources/use case warrant hand coding

� Ideally we can share not only low-level building blocks, but fundamental 

microservices: compose them and augment to serve use case

� Clear at this point in seminar that we need flexibility in provisioning and 

composition too

� http://www.mcs.anl.gov/research/projects/mochi/

– Thanks to many at ANL, The HDF Group, LANL, and CMU24
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